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Case B:  W/PH is on the upward part of the supply and W/PL is on the vertical portion..  
W/PH <Wk and Wk =or < W/PL< Wc, so L= Lo. 
It is easily verified that in Case A, holding Me constant and reducing ML, W is decreased.
limit to how low ML can be and still be in Case A is when W/PL = Wk.  
For values of ML less than this critical value, the model changes regime to Case B, as long
lower values of PL are such that W/PL are < or =  Wc, the competitive market clearing rea
wage. 
For values of ML less than this second critical value of ML, the model changes regime to C
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This generates "no solution was found" because the 
optimal wage is at the boundry where Wk = W/PL. The 
first term is neg. In order to verify this differeniate the la
term.
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Because θ ψ⋅  < 1 this must be negative for all W. Consider that Case A is gererated by low M's "clos
lower values ML are chosen, then the opt.W in Case A become larger until the point when W/PL= Wk
critical value the opt.nominal wage will not change so long as Case B applies, but the real wage W/P
generate lower and lower valuesof PL. I will solve for the critical value of ML and Thereby detremine t
 

Again solve (19) and (20) for PL in terms of ML and W and PH in terms of MH and W, and 
substute into the opt. W equ. above.For X = .2 
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This is the solution for case A at the lower bound where regimes shift. 
We verify that this occurs at ML= 3.41.
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I verified that for X = .2  that the choice of ML = 3.415 and Me= 3.685 will generate W/PL = wk  
and that the opt. nominal wage is W = 1.196 in Case B.for all values of ML < 3.415. X = .001 is 
only of interest in case A as a benchmark for the det. case.
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Case C.
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se" to Me. Holding Me constant, as lower and 
k is reached.For value of ML lower than this 
L will increase as ML continues to decrease and 
the value of W for Case B.
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