Case B: W/PH is on the upward part of the supply and W/PL is on the vertical portion..
W/PH <Wk and Wk =or < W/PL< Wc, so L= Lo.

It is easily verified that in Case A, holding Me constant and reducing ML, W is decreased.
limit to how low ML can be and still be in Case A is when W/PL = Wk.

For values of ML less than this critical value, the model changes regime to Case B, as long
lower values of PL are such that W/PL are < or = Wc, the competitive market clearing rea
wage.

For values of ML less than this second critical value of ML, the model changes regime to ¢
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d This generates "no solution was found" because the
0= d—EH(X) solve, W — optimal wage is at the boundry where Wk = W/PL. The
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first term is neg. In order to verify this differeniate the la
term.
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Because 0-\y < 1 this must be negative for all W. Consider that Case A is gererated by low M's "clos

lower values ML are chosen, then the opt.W in Case A become larger until the point when W/PL= W}
critical value the opt.nominal wage will not change so long as Case B applies, but the real wage W/P
generate lower and lower valuesof PL. | will solve for the critical value of ML and Thereby detremine -

Again solve (19) and (20) for PL in terms of ML and W and PH in terms of MH and W, and
substute into the opt. W equ. above.For X = .2
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Me := 3.685 (Me—X-ML) YL = Lo? Wk = 0463
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MH(X) = 3.752 This is the solution for case A at the lower bound where regimes shift.
We verify that this occurs at ML= 3.41.
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PL varies directly with ML in case B. But at this
W = root(f(W), W) W = 1.198 critcal value of ML the same value of PL is
generated as when
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PH(X) = 3.177 PL =258  Pe:= X-PL + (1 - X)-PH(X)
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| verified that for X = .2 that the choice of ML = 3.415 and Me= 3.685 will generate W/PL = wk
and that the opt. nominal wage is W = 1.196 in Case B.for all values of ML < 3.415. X =.001 is
only of interest in case A as a benchmark for the det. case.
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< is reached.For value of ML lower than this
L will increase as ML continues to decrease and
the value of W for Case B.



(6-y) (1-6-y) (1-0-y)
{(1)1:“} W{( K } " x
! CRY )

ML (1-0-y)
(e-w)}
— — —— N — —

(1-0-y)

ezl

X-exp| 0-y-In| = 1 +1-X

(1-0-y)

ML

i i __(1_ )W(ew)} | |







+0-y-In

ML

_-{(1 —k)-W






