
Spatial landmarks regulate a Cdc42-dependent MAPK
pathway to control differentiation and the response
to positional compromise
Sukanya Basua,1, Nadia Vadaiea,1, Aditi Prabhakara, Boyang Lia, Hema Adhikaria, Andrew Pitoniaka, Jacky Chowa,
Colin A. Chavela, and Paul J. Cullena,2

aDepartment of Biological Sciences, University at Buffalo, Buffalo, NY 14260

Edited by Jasper Rine, University of California, Berkeley, CA, and approved February 22, 2016 (received for review November 17, 2015)

A fundamental problem in cell biology is to understand how spatial
information is recognized and integrated into morphogenetic re-
sponses. Budding yeast undergoes differentiation to filamentous
growth, which involves changes in cell polarity through mechanisms
that remain obscure. Here we define a regulatory input where spatial
landmarks (bud-site–selection proteins) regulate the MAPK pathway
that controls filamentous growth (fMAPK pathway). The bud-site
GTPase Rsr1p regulated the fMAPK pathway through Cdc24p, the
guanine nucleotide exchange factor for the polarity establishment
GTPase Cdc42p. Positional landmarks that direct Rsr1p to bud sites
conditionally regulated the fMAPK pathway, corresponding to
their roles in regulating bud-site selection. Therefore, cell differ-
entiation is achieved in part by the reorganization of polarity at
bud sites. In line with this conclusion, dynamic changes in bud-
ding pattern during filamentous growth induced corresponding
changes in fMAPK activity. Intrinsic compromise of bud-site selec-
tion also impacted fMAPK activity. Therefore, a surveillance mech-
anism monitors spatial position in response to extrinsic and
intrinsic stress and modulates the response through a differentia-
tion MAPK pathway.
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Positional information is critical for the establishment of polarity
and the regulation of cell division. Spatial context is also im-

portant for many biological processes, including development,
neuronal organization and guidance, directional motility, and
cell differentiation. Positional information comes from proteins
that mark the cell-surface and gradients of diffusible receptors,
peptide ligands, and transcription factors (1–4). Evolutionarily
conserved protein modules control cell polarity in eukaryotes
(5, 6). In yeast, polarity is determined by cell type. Positional
cues mark the poles of haploid and diploid cells, which are
recognized by a core module composed of the bud-site GTPase
Rsr1p (7), its guanine nucleotide exchange factor Bud5p (8, 9),
and its GTPase activating protein Bud2p (10). Rsr1p in turn
regulates the ubiquitous polarity establishment GTPase Cdc42p
(11). Active (GTP-bound) Cdc42p associates with multiple ef-
fector proteins to initiate and maintain polarized growth at
specific sites.
Cell polarity can be reorganized in response to extrinsic cues.

Yeast cells can orient their axis of growth along pheromone gradients
(12) and to the site of a wound (13). Cell polarity is also reorganized
during filamentous/invasive/pseudohyphal growth, which occurs
in response to nutrient limitation (glucose or nitrogen), and which
results in the formation of branched chains of interconnected cells
(14–16). Many fungal species undergo filamentous growth, and in
some species of pathogenic microorganisms, filamentous growth is
required for virulence (17). In yeast, the change in polarity during
filamentous growth is striking in haploid cells, which switch from axial
to distal-unipolar budding (15, 18). It is not clear how polarity is
reorganized during filamentous growth, except that signal trans-
duction pathways are involved and the same positional cues that

regulate bud-site selection in diploid cells are also required for fila-
mentous growth (19, 20).
Among the signaling pathways that regulate filamentous growth

is an ERK-type MAPK pathway called the filamentous growth
(fMAPK) pathway. MAPK pathways are evolutionarily conserved
protein modules that regulate cell differentiation and stress
responses in eukaryotes. The fMAPK pathway is regulated by
the signaling mucin Msb2p (21), a cell-surface glycoprotein that
is proteolytically processed and activated in glucose-limiting
conditions (22, 23). At the plasma membrane (PM), Msb2p
functions with transmembrane proteins Sho1p (21, 24, 25) and
Opy2p (26–33). The transmembrane regulators connect (in some
manner) to a cytosolic scaffold-type adaptor, Bem4p, that also
regulates the fMAPK pathway (34–36). Msb2p and Bem4p as-
sociate with Cdc42p (21, 34) to promote its function in the fMAPK
pathway (37, 38). Like many Rho GTPases (39–42), Cdc42p has
multiple roles in regulating cell polarity and signaling. In the
fMAPK pathway, Cdc42p regulates a protein kinase cascade com-
posed of Ste20p (PAK), Ste11p (MAPKKK), Ste7p (MAPKK),
and Kss1p (MAPK) (43, 44). Kss1p regulates a suite of tran-
scription factors (45–47) that control the expression of target
genes, whose products together with other proteins and pathways
generate the filamentous cell type.
Here we report a new regulatory connection between bud-site–

selection proteins and the fMAPK pathway. We show that the bud-
site GTPase Rsr1p, together with positional landmarks, regulate
the fMAPK pathway through the shared GTPase Cdc42p. This is a
new role for bud-site–selection proteins in regulating MAPK sig-
naling. Following-up on this discovery led to the identification of a
surveillance mechanism, where positional cues provide information
about spatial context to regulate the cellular response to extrinsic
and intrinsic morphogenetic stress. In this way, cells monitor po-
sitional integrity before engaging in MAPK-dependent differenti-
ation and other responses.

Significance

We identify a new role for bud-site–selection proteins outside of
their established roles in regulating growth site determination, as
components of a surveillance pathway that monitors spatial po-
sition during intrinsic and extrinsic morphogenetic stress and
regulates a Cdc42p- and MAPK-dependent response.
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Results
Bud-Site GTPase Rsr1p Regulates the fMAPK Pathway. Rsr1p is an
established regulator of bud-site selection that functions through
Cdc42p (7, 10, 48). Rsr1p was also uncovered in a screen for
Cdc42p-interacting proteins that impact fMAPK activity (34).
To determine whether Rsr1p regulates the fMAPK pathway,
the rsr1Δ mutant was examined in a strain background that un-
dergoes filamentous/invasive growth (

P
1278b) (14, 49), a fungal

behavioral response that is controlled by the fMAPK pathway. In
this background, the rsr1Δ mutant was defective for phosphory-
lation of the MAP kinase Kss1p (P∼Kss1p) (Fig. 1A) and
showed the same defect as a null mutant in the fMAPK pathway
(ste11Δ). The ste11Δ, ste12Δ and ste20Δ mutants have equivalent
phenotypes in filamentous growth assays and were used in-
terchangeably. The rsr1Δ mutant was defective for invasive growth
(Fig. 1B) by the plate-washing assay (15). The rsr1Δmutant was also
defective for expression of transcriptional targets of the fMAPK
pathway, including FRE-lacZ (Fig. 1C and SI Appendix, Fig. S1A)
(44), FLO11 (see below), and FUS1-HIS3 (SI Appendix, Fig. S1B),
which in

P
1278b cells lacking an intact mating pathway (ste4)

shows dependency on fMAPK regulators (21, 34).
The fMAPK pathway also regulates the response to defects in

protein glycosylation (28, 50, 51). To determine whether Rsr1p is
involved in this aspect of fMAPK regulation, a conditional gly-
cosylation mutant, pmi40-101, whose glycosylation defect is
suppressed by mannose (50), was examined. Rsr1p was required
for fMAPK activity in the pmi40-101 mutant experiencing gly-
cosylation deficiency (Fig. 1D and SI Appendix, Fig. S1C). In this
blot and other blots, total Kss1p levels can vary as a result of
positive feedback, because KSS1 is a transcriptional target of the
fMAPK pathway (52). Together, the results show that Rsr1p
positively regulates the fMAPK pathway.

Rsr1p Controls the fMAPK Pathway by Nucleotide Cycling and
Interaction with the Guanine Nucleotide Exchange Factor Cdc24p.
Rsr1p regulates bud-site selection through the Cdc42p module
(7). To determine whether Rsr1p regulates the fMAPK pathway
through Cdc42p, the amount of active Cdc42p (Cdc42p-GTP) in
the cell was increased by disrupting RGA1, which encodes the
main GTPase activating protein for Cdc42p in the fMAPK
pathway (53, 54). The rga1Δ rsr1Δ double-mutant bypassed the
fMAPK signaling defect of the rsr1Δ single-mutant (Fig. 2A),

which indicates that Rsr1p functions at or above the level of
Cdc42p in the fMAPK pathway. The rga1Δ mutant did not rescue
the bud-site–selection defect of the rsr1Δ mutant (SI Appendix,
Table S3). Thus, bypass occurs by raising Cdc42p-GTP levels, not
restoring the bud-site–selection defect of rsr1Δ.
Rsr1p is a Ras-type GTPase that cycles between active (GTP-

bound) and inactive (GDP-bound) conformations. In the GTP-
bound conformation, Rsr1p interacts with effector proteins. A
version of Rsr1p that fails to interact with effectors (T35A) (55–57)
or versions that mimic the GDP- (K16N) or GTP-locked states
(G12V) were defective for fMAPK activity (Fig. 2B). A GTP-locked
version of Rsr1p might be expected to constitutively activate the
fMAPK pathway. However, cells containing Rsr1pG12V have a
bud-site–selection defect (SI Appendix, Table S3) that results from
sequestering Cdc24p in the inactive state (7) and from its failure to
concentrate at polarized sites (56). Thus, as for many GTPases,
nucleotide cycling of Rsr1p is necessary for its function in the
fMAPK pathway. The G12V, K16N, and T35A versions of Rsr1p
have a dominant-negative phenotype, which induces a bud-site–
selection defect in wild-type cells (55). The G12V, K16N, and
T35A versions of Rsr1p also caused a defect in fMAPK activity
in wild-type cells (Fig. 2C).
During bud-site selection, Rsr1p recruits Cdc24p to the PM

(56, 58, 59). A version of Cdc24p that is constitutively anchored to
the PM by myristoylation (Myr-Cdc24p) (34) bypassed the fMAPK
signaling defect of the rsr1Δ mutant (Fig. 2D). Myr-Cdc24p also
bypassed the signaling defect of the bud4Δ mutant (SI Appendix,
Fig. S1D). Together, these results indicate that one function for
bud-site–selection proteins in fMAPK regulation is PM re-
cruitment of Cdc24p. Rsr1p also interacts with Cdc24p at bud sites
(7, 58, 60, 61). To determine whether Rsr1p regulates the fMAPK
pathway through interaction with Cdc24p, a version of Cdc24p was
examined that at permissive temperatures cannot interact with
Rsr1p (cdc24-4 or G168D) (58). Cells harboring the cdc24-4 allele
showed reduced fMAPK pathway activity (Fig. 2D) [pcdc24-4
(30 °C)]. Thus, Rsr1p interacts with and recruits Cdc24p to the
PM to regulate the fMAPK pathway.
All of the versions of Rsr1p tested that were defective for bud-site

selection were defective for fMAPK activity, which may indicate
that bud-site selection itself is tied to fMAPK regulation. To test this
possibility, a version of Rsr1p was examined that lacked the poly-
basic domain, which mediates homotypic interactions (56, 57, 62),

Fig. 1. Rsr1p regulates the fMAPK pathway. (A) Immunoblot analysis of P∼Kss1p levels in wild-type cells and the rsr1Δ and ste11Δmutants. Cells were grown
to midlog phase in SD+AA (glucose-rich media). Cell extracts were examined by immnoblot analysis using p42/p44 antibodies (to detect P∼Kss1p), Kss1p
antibodies, and Pgk1p antibodies as a control for protein levels. Numbers indicate relative band intensity for P∼Kss1p to total Kss1p (Ratio). Asterisk refers to
a background band (102). (B) Plate-washing assay. Cells were grown for 96 h on YEPD medium. The plate was photographed, washed, and photographed
again. (C) Expression of the FRE-lacZ reporter. Cells were grown to midlog phase in SD-URA medium to maintain selection for the plasmid and evaluated by
β-galactosidase assays. β-Galactosidase assays were performed from independent cultures and are expressed in Miller Units. Error bars show differences
between samples. *P < 0.05. (D) Strains harboring the pmi40-101 mutation alone and with the indicated deletions were grown to midlog phase in YEPD or
YEPD + 50 mM mannose. P∼Kss1p levels were examined as in A.
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and that was defective for fMAPK activity (Fig. 2B) (rsr1-7K260-264S).
The rsr1-7 mutant has a conditional bud-site–selection defect (62).
In our hands, the defect was less severe than reported (62), which
might result from differences in growth conditions or strain back-
grounds. The partial bud-site–selection defect of the rsr1-7K260-264S

mutant (Fig. 2E, yellow bars) showed a corresponding defect in
fMAPK activity (Fig. 2E, blue bars). These results, and results
presented below show a correspondence between bud-site selection
and fMAPK activity.

Axial Cues Regulate the fMAPK Pathway in Glucose-Rich Conditions.
During bud-site selection, Rsr1p is recruited by positional land-
marks to bud sites (11). We asked whether positional landmarks
also regulate the fMAPK pathway. In glucose-rich conditions (2%
glucose), haploids bud in an axial pattern (Fig. 3A) (63). A mutant
lacking axial cues showed a defect in fMAPK activity in glucose-
rich conditions (Fig. 3B, axl2Δ, blue bars), based on the expression
of the fMAPK pathway target FLO11 (64). The axl2Δ mutant
showed the same defect as the core module (Fig. 3B, rsr1Δ, blue
bars) and the same genetic suppression pattern as the rsr1Δ rga1Δ
double-mutant (Fig. 3C; compare with Fig. 2A and SI Appendix,

Table S3). Like axl2Δ, other axial mutants were also defective for
fMAPK activity, based on P∼Kss1p analysis and FUS1 reporter
activity (SI Appendix, Fig. S2).
Two additional experiments support the idea that axial cues

regulate the fMAPK pathway. First, restoring axial budding to
axial mutants by loss of multigenerational cortical marks (Rax
proteins) (65–67) restored MAPK signaling (SI Appendix, Fig. S3
A–D, and Table S4). The Rax proteins might impact fMAPK
through multiple mechanisms, as these proteins localize to the
division site as well as the distal pole (65–67). Rax proteins have
not been extensively studied in haploid cells. Consistent with
their roles in regulating distal-pole budding in diploid cells,
Rax1p and Rax2p regulated invasive growth (SI Appendix, Fig.
S3E) and distal-pole budding of filamentous haploid cells (SI
Appendix, Fig. S3F).
A second experiment supporting a role for axial cues in regu-

lating fMAPK comes from analysis of separate functional domains
on the Axl2p protein. In addition to its role in regulating bud-site
selection, Axl2p also interacts with Cdc42p and plays a role in
regulating septin organization. This role for Axl2p was uncovered
by its ability to suppress the septin organization defects of an allele

Fig. 2. Rsr1p regulates the fMAPK pathway through GTPase cycling and interaction with Cdc24p. (A) P∼Kss1p levels were examined as in Fig. 1A for the
strains indicated. Cells were grown to midlog phase in SD+AA. (B) P∼Kss1p levels were examined as in Fig. 1A, except that cells were grown in SD-URA or SD-
LEU media to maintain selection for plasmids harboring alleles of RSR1. (C) P∼Kss1p levels were examined as in Fig. 1A in wild-type cells harboring the
indicated RSR1 alleles. Cells were grown to midlog phase in YEPD media. (D) P∼Kss1p levels were examined as in Fig. 1A in the cdc24::NAT and cdc24::NAT
rsr1Δ strains carrying YEp351-Cdc24p-GFP (wild-type), pRS425-CDC24-4 (cdc24-4), and YEp351-MYR-Cdc24p-GFP (Myr-Cdc24p) plasmids. (E, Left axis)
β-Galactosidase assays were performed as described in Fig. 1C. Wild-type values were set to 1. Other values were adjusted accordingly. The experiment was
performed in triplicate. Error bars show the SD between trials. (Right axis) Axial budding expressed as a percentage was determined for wild-type cells, rsr1Δ,
and rsr1-7K260-264S mutants grown to midlog phase in SD-URA medium. Budding pattern was determined by CFW staining. More than 200 cells were counted
in independent trials. Error bars show the SD between trials. *P < 0.01.
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of CDC42 called cdc42V36G (68). A version of Axl2p that is spe-
cifically defective for septin organization functioned in the fMAPK
pathway (SI Appendix, Fig. S4 A and B) (p1-544, 641–725) (68, 69).
By comparison, a version of Axl2p that is specifically defective for
axial budding did not (SI Appendix, Fig. S4 A and B) (p1-544, 641–
685). This version of Axl2p (p1-544, 641–685) lacks an interaction
site for Bud4p but retains the ability to localize to the mother-bud
neck (68). Therefore, the bud-site–selection function of Axl2p un-
derlies its role in regulating the fMAPK pathway. These results
reinforce the idea that axial cues regulate the fMAPK pathway.
Why do axial cues regulate fMAPK in an environment where

cells do not normally undergo filamentous growth (Fig. 3A, Glu
Rich)? Basal activity of the fMAPK pathway in glucose-rich
conditions prepares cells for invasive growth (70). Specifically, at
high and moderate glucose levels, cells express FLO11, which
promotes adhesion during biofilm/mat formation (71) and con-
tributes to the initiation of filamentous growth. As glucose levels
decrease, cells become elongated through a mechanism that in-
volves the polarisome (20) and a delay in the cell cycle (72, 73),
although cells continue to bud axially (70). Axial cues (bud3Δ)

and the core module (rsr1Δ) were required for cell elongation
(Fig. 3D), which occurs in an fMAPK-dependent manner during
filamentous growth (Fig. 3D) (ste12Δ) (72, 74). Axial cues were
also required for the fMAPK response to protein glycosylation
deficiency (SI Appendix, Fig. S4C). Therefore, axial cues regulate
basal fMAPK activity in glucose-rich conditions to prepare cells
for invasive growth and contribute to the diversity of MAPK-
dependent responses, like the response to protein glycosylation
deficiency.

Bud8p Regulates the fMAPK Pathway In Glucose-Limiting Conditions.
Glucose depletion triggers invasive growth (18) and activates the
fMAPK pathway (Fig. 3B, compare blue bar to red bar for wild-
type) (31). In glucose-limiting conditions, haploid cells switch
from axial to distal-unipolar budding by utilization of the distal-
pole marker Bud8p (Fig. 3A) (20). Bud8p was required for FLO11
expression in glucose-limiting conditions (Fig. 3B, compare wild-
type to bud8Δ, red bars). Bud8p was also required for P∼Kss1p
activity (SI Appendix, Fig. S4D). Therefore, Bud8p regulates the
fMAPK pathway in glucose-limiting conditions.

Fig. 3. Bud-site–selection proteins conditionally regulate the fMAPK pathway depending on glucose availability. (A) Budding pattern of haploid cells in glucose-
rich and glucose-limiting conditions (Glu, glucose). Proteins required for axial budding, distal-unipolar budding, and the core module are shown. (B) Quantitative
PCR (qPCR) analysis of FLO11 expression (relative to ACT1 levels) in the indicated mutants in glucose-rich (YEPD) and glucose-limiting (YEP-Gal) conditions. Assays
were performed from independent cultures. Average values are shown. Error bars show the SD between trials. *P < 0.01. (C) P∼Kss1p levels were examined as in Fig.
1A for the indicated strains. Cells were grown to midlog phase in YEPD medium. NS, not significant. (D) Ratio of the long-to-short axis in the indicated mutants.
More than 50 cells were counted for each mutant. Cells were incubated in glucose-limiting media (YEP + 0.2% glucose). *P < 0.001.
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In glucose-rich conditions, Bud8p is not required for budding
in haploid cells (63). Under this condition, Bud8p did not reg-
ulate the fMAPK pathway (Fig. 3B, bud8Δ, blue bars, and SI
Appendix, Fig. S2). Similarly, axial cues, which do not regulate
distal-pole budding under nutrient-limiting conditions (63), did
not regulate FLO11 expression in glucose-limiting conditions (Fig.
3B, axl2Δ, red bars). The core module is required for bud-site
selection under all conditions (63) and regulated fMAPK signaling
under all conditions tested (Fig. 3B, rsr1Δ, blue and red bars).
Therefore, different positional landmarks regulate the fMAPK
pathway in different nutrient states corresponding to their roles in
regulating bud-site selection.

A Specific Input from the Rsr1p Branch Regulates the fMAPK Pathway.
Msb2p and other proteins regulate Cdc42p in the fMAPK
pathway (see Fig. 7, discussed below) (21, 22, 34). To define how
inputs from the Msb2p and Rsr1p branches impact the fMAPK
pathway, the msb2Δ and rsr1Δ single-mutants were compared
with an msb2Δ rsr1Δ double-mutant and MAPK-null mutant
(ste11Δ). In glucose-rich conditions, Msb2p and Rsr1p both regu-
lated the fMAPK pathway (Fig. 4A and SI Appendix, Fig. S5A). In
glucose-limiting conditions, rsr1Δ played a more minor role (Fig.
4B). This observation supports the data presented in Fig. 3B, which
shows that axial and core mutants have a fivefold decrease in
MAPK activity in glucose-rich conditions [Fig. 3B, blue bars, com-
pare wild-type to rsr1Δ and axl2Δ (although the pathway is activated
to a lower overall level)], compared with a ∼1.8-fold decrease seen
in distal and core mutants under glucose-limiting conditions (Fig.
3B, red bars, compare wild-type to rsr1Δ and bud8Δ). Thus, bud-

site–selection proteins play quantitatively different roles in regu-
lating the fMAPK pathway under different conditions.
Msb2p is activated in glucose-limiting conditions by proteolytic

processing (23), which may partially obviate the requirement for
the Rsr1p branch. In support of this possibility, a hyperactive allele
ofMSB2,MSB2Δ100–818 (21), bypassed the fMAPK signaling defect
of the rsr1Δ mutant (Fig. 4C and SI Appendix, Fig. S5B). Similarly,
a hyperactive version of Sho1p, Sho1pP120L (22) also bypassed
the fMAPK signaling defect of the rsr1Δ mutant (SI Appendix, Fig.
S5C). Hyperactive versions of Msb2p and Sho1p also bypassed the
signaling (SI Appendix, Fig. S5D) and invasive growth (SI Appendix,
Fig. S5E) defects of the axl2Δ mutant. Therefore, the Rsr1p branch
can be bypassed by activation of the Msb2p branch.
Like other signaling pathways, the fMAPK pathway shares

components with other MAPK pathways, including the mating
and high osmolarity glycerol response (HOG) pathways (75–78).
Despite using common components, each MAPK pathway in-
duces a specific response (52). In the mating pathway, Rsr1p does
not regulate MAPK signaling but contributes to cell polarization
[e.g., the formation of cells with mating projections or shmoos
(79)]. Rsr1p and Gβγ-Far1p-Cdc24p have a redundant function in
cell polarization during mating (79–81), and Rsr1p becomes es-
sential for shmoo formation in cells with defective Gβγ-mediated
chemotropism (80). We also found that Rsr1p did not regulate the
mating pathway, based on sensitivity of cells to the mating phero-
mone α factor (Fig. 4D) and P∼MAPK analysis (SI Appendix, Fig.
S6A). To determine whether Rsr1p regulates the HOG pathway,
the RSR1 gene was disrupted in cells lacking the redundant Sln1p
branch (ssk1Δ) (82). The rsr1Δ ssk1Δ double-mutant showed

Fig. 4. Roles of the Rsr1p and Msb2p branches in regulating the fMAPK pathway and other MAPK pathways that share components. (A) P∼Kss1p levels were
examined as in Fig. 1A for the strains indicated. Cells were grown in SD+AA medium to midlog phase. (B) P∼Kss1p levels were examined as in Fig. 1A for the
strains indicated. Cells were induced in YEP-GAL medium to midlog phase. (C) P∼Kss1p analysis of Msb2Δ100–818 signaling in wild-type cells and the rsr1Δ
mutant. P∼Kss1p levels were examined as in Fig. 1A. Cells were grown in SD+AA medium to midlog phase. (D) Halo assays. Approximately equal concen-
trations of the indicated strains were spread onto YEPD media. Next, 5 μm of α-factor was spotted onto plates, which were incubated for 48 h at 30 °C. The
experiment was performed four times and a typical example is shown. (E) P∼Hog1p levels in the indicated mutants. Cells were grown to midlog phase in
YEPD. KCl was added to a final concentration of 0.4 M for 10 min. Cell extracts were evaluated by immunoblot analysis using antibodies that recognize P∼p38,
Hog1p, and Pgk1p proteins. Ratio refers to P∼Hog1p to Hog1p levels. (F) Serial dilutions were spotted onto YEPD and YEPD + 1 M KCl for 3 d at 30 °C.
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normal phosphorylation of the MAPK Hog1p in response to salt
(P∼Hog1p) (Fig. 4E, compare rsr1Δ ssk1Δ to ste11Δ ssk1Δ and
pbs2Δ, which lacks the HOGMAPKK). Moreover, the rsr1Δ ssk1Δ
mutant did not show a growth defect in high-salt medium (Fig. 4F).
Thus, Rsr1p does not regulate the HOG pathway. In fact, basal
cross-talk to the fMAPK pathway that occurs in the pbs2Δ mutant
(24, 83), which requires fMAPK components, was also dependent
on Rsr1p (SI Appendix, Fig. S6B). We also tested whether general
defects in cell polarity might influence fMAPK activity. Mutants
defective for polarized growth [e.g., polarisome mutants bud6Δ,
pea2Δ, spa2Δ and bni1Δ (84)] or that exhibit hyperpolarized
growth [hsl1Δ and hsl7Δ (85)] did not impact fMAPK (SI Ap-
pendix, Fig. S6C). Therefore, bud-site–selection proteins play a
specific role in regulating the fMAPK pathway.

Yeast Cells Dynamically Orient Their Growth Site Based on Glucose
Levels, Which Has a Corresponding Impact on fMAPK Activity. The
fact that bud-site–selection proteins regulate the fMAPK pathway
indicates that spatial/positional information itself may control as-
pects of the differentiation response. Except for the observation

that prolonged nutrient starvation leads to loss of axial budding in
haploids (63), the dynamics of nutrient-dependent changes in po-
larity in haploid cells has not been explored. To define the rate of
polarity reorganization during filamentous growth, a two-fluores-
cent staining technique was used (86). Midlog phase cells shifted
from glucose-rich (YEPD) to glucose-limiting [YEP-Galactose
(Gal)] conditions switched from axial (>99%) to distal-unipolar
budding (∼50%) after 2.5 h (Fig. 5A, red square, and SI Appendix,
Fig. S7). Cells shifted from YEP-Gal back to YEPD reverted to
axial budding in a similar timespan (Fig. 5A, green triangle). Cells
shifted from YEPD to YEPD in a mock experiment remained axial
(Fig. 5A, yellow circle). Examples of the two-fluorescent staining
technique are shown in Fig. 5B. Given that doubling time is ∼2.5 h,
these results indicate that yeast cells survey glucose availability and
orient their axis of growth within a growth cycle.
Time-lapse microscopy showed that cells transferred from

YEPD to YEP-GAL switched from axial to distal-unipolar
budding in a single cycle (Movies S1 and S2). Most haploid cells
bud distally in glucose-limited media, as evident by the single-cell
invasive growth assay (Fig. 5C, Upper) (18). Filamentous cells

Fig. 5. Extrinsic changes in spatial position regulate changes in fMAPK activity. (A) Distal-unipolar budding (%) was determined in cells grown in different
conditions. At time 0, midlog phase cells in YEPD were harvested, washed, and transferred to YEPD (yellow circle) or YEP-Gal (red square) medium. At the
indicated times, cell aliquots were evaluated for distal-unipolar buds by two-fluorescent staining. For the switchback experiment, cells grown in YEP-Gal for
3 h were transferred to YEPD medium and evaluated for distal-pole budding (green triangle). At least 50 cells were counted for each experiment. Error bars
show SD between separate trials. (B) Examples of FITC-ConA/TRITC-ConA double-labeling (Upper) and CFW/FITC-ConA double-labeling (Lower) of cells from
the 5-h time point. Distal buds are marked with black arrows. The axial bud in the lower panel is marked with a white arrow. (Scale bar, 5 μm.) (C, Upper)
Example of the budding pattern of filamentous cells by the single cell assay. (Scale bar, 10 μm). (Lower) Time course of budding pattern of filamentous cells
exposed to glucose. Cell D1 budded at the proximal pole, D1-1. Cell D2 budded at the distal pole (D2-1). D2-1 budded at the proximal pole D2-1-1. Diagram at
right illustrates the budding pattern. Red, distal-unipolar; green, axial. Pattern was confirmed by serial images taken in the plane of the z axis. (D) P∼Kss1p
levels were examined as in Fig. 1A for the strains indicated. Wild-type cells were grown in YEPD (Glu) or YEP-Gal (Gal). ↑AXL1 refers to pGal-AXL1. Cells were
also evaluated for FRE-lacZ activity. β-Galactosidase assays were performed as described in Fig. 1C. Differences in FRE-lacZ activity are expressed as a ratio
(wild-type set to 1), and differences between trials were <10%. More than 200 cells were counted for each strain to determine percent axial.
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exposed to glucose switched to axial budding (Fig. 5C, Lower, D1
produced D1-1, and SI Appendix, Fig. S8). Not all cells switched
(Fig. 5C, Lower, D2 produced D2-1, and SI Appendix, Fig. S8),
but produced daughters that budded axially in the following cycle
(Fig. 5C, D2-1 produced D2-1-1). Large cells typically retained
the distal pattern, which may indicate that commitment to bud
distally occurs at a specific point in the cell cycle. The switch in
polarity is not a result of changes in the marks themselves, which
are present under all conditions (SI Appendix, Fig. S9), but may
be controlled by Axl1p, a cell-type specific protein that is re-
quired for axial budding (87, 88) whose levels are regulated by
glucose availability (20).
Because budding pattern impacts fMAPK activity (Figs. 1–4),

the switch in polarity in response to glucose availability may have a
corresponding impact on MAPK signaling. In support of this
possibility, cells forced to bud axially in glucose-limiting conditions
(by overexpressing AXL1) (Fig. 5D, % Axial) showed reduced
P∼Kss1p levels (Fig. 5D) and FRE-lacZ activity (Fig. 5D, FRE-
lacZ). These results suggest the possibility that the switch to axial
budding by filamentous cells encountering a glucose-rich environ-
ment provides a mechanism for attenuation of the fMAPK path-
way. Cell polarity reorganization can therefore dictate MAPK
activity in response to an extrinsic cue.

Intrinsic Compromise of Bud-Site Selection Impacts fMAPK Activity.
The above data indicate that bud-site–selection proteins may mon-
itor the spatial position of the cell and regulate a MAPK-dependent
response. In addition to extrinsic cues like glucose, budding pattern
is tied to intrinsic processes such as transcription, cell cycle pro-
gression, cytoskeletal organization, phosphatidylinositol phosphate
signaling, cytokinesis, and protein trafficking (89, 90). The above
findings predict that mutants in these processes that confer bud-site–
selection defects would show reduced fMAPK activity. This pre-
diction is based on the correspondence between budding pattern and
fMAPK activity in cells compromised for Rsr1p, Bud2p, Bud3p,
Bud4p, Bud5p, Bud7p, Bud8p, Axl1p, Axl2p, and Rax function

(Figs. 1–4 and SI Appendix, Figs. S2 and S3). To further test this
possibility, a mutant was examined in which bud-site selection was
compromised, in a process not otherwise connected to fMAPK
regulation. At permissive temperatures, the septin mutant (cdc12-6)
displays normal cytokinesis but has a bud-site–selection defect (Fig.
6A, % Axial), which may result from mis-localization of axial cues at
the mother-bud neck (91). The bud-site–selection defect of the
cdc12-6 mutant corresponded to a defect in fMAPK activity (Fig.
6A). Defects in phosphatidylinositol phosphate signaling, which also
compromises bud-site selection, likewise compromised fMAPK sig-
naling, which can account for a previous result from our laboratory
(92). Therefore, intrinsic compromise of bud-site selection attenu-
ates fMAPK activity.
What if the regulatory input by bud-site–selection proteins is

ignored? To test this possibility, bypass of the signaling defect
of bud-site–selection mutants was examined. Cells expressing
MSB2Δ100–818, which signals independent of the Rsr1p branch
(Fig. 4C and SI Appendix, Fig. S5B), had irregular morphologies,
including growth at multiple sites (Fig. 6B). This phenotype does
not occur in wild-type cells because of singularity in budding (93,
94) but has been reported in cells expressing activated versions of
Cdc42p (94, 95). Such cells showed localization of GFP-Bud8p at
multiple sites (Fig. 6C) and had multiple septin rings (Fig. 6C),
indicative of multiple mother-bud necks. Cells with elevated
fMAPK activity, like MSB2Δ100–818 or cells that overexpress the
MSB2 gene (GAL-MSB2), which also bypasses rsr1Δ, showed
growth defects over multiple passages (Fig. 6D), which indicates
that this growth pattern is not optimal for viability. Therefore,
bypassing the regulatory input of the Rsr1p branch leads to
growth and polarity defects.

Discussion
Bud-site–selection proteins are among the most intensively studied
positional landmarks in eukaryotes, and the molecular basis for how
they function is well understood (11). Bud-site–selection proteins

Fig. 6. Intrinsic compromise of spatial position impacts fMAPK activity. (A) P∼Kss1p levels were examined as in Fig. 1A for the strains indicated. Budding
pattern was determined by bud-scar staining and visual inspection. More than 200 cells were counted for the experiment. (B) Scanning electron micrographs
of wild-type cells (Left) and cells with an activated fMAPK pathway (Right). (Scale bar, 5 μm.) (C) Localization of GFP-Bud8p and Cdc12p-GFP (103) in cells
expressing MSB2Δ100–818. (Scale bar, 5 μm.) (D) Growth defect of the indicated yeast strains spotted onto YEP-GAL for the times shown overexpressing MSB2
over multiple passages.
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are not known to function outside the budding pathway. Here we
define a new role for bud-site–selection proteins as regulators of an
ERK-type MAPK pathway. To our knowledge, this is the first
connection between positional landmarks and MAPK regulation in
yeast and may extend broadly to other systems. This connection
does not arise from a moonlighting function of a particular bud-
site–selection protein but involves the entire bud-site–selection
machinery. We further identify a surveillance mechanism that al-
lows cells to sense spatial information and control a Cdc42p- and
MAPK-dependent response.

Spatial Cues Regulate the fMAPK Pathway. The discovery that bud-
site–selection proteins regulate the fMAPK pathway builds on the
understanding of how the fMAPK is regulated. Two regulatory
branches converge on the Cdc42p module to regulate the fMAPK
pathway: the Msb2p branch, which also contains Sho1p, Opy2p and
Bem4p (21, 24, 26–34), and the Rsr1p branch, whose activity is
governed by positional landmarks (Fig. 7).
A potentially trivial explanation is that bud-site–selection proteins

elevate the level of Cdc42p-GTP in the fMAPK pathway. Indeed,
Rsr1p interacts with Cdc24p and functions at the level of Cdc42p.
Two observations, however, indicate that Rsr1p plays a specific role
in fMAPK regulation. One is that Rsr1p exhibits a nonadditive
input to the fMAPK pathway (Fig. 4A). Thus, the Rsr1p andMsb2p
branches cooperate to transmit a signal to fMAPK. The second
observation is that Rsr1p regulates the fMAPK pathway but not
other MAPK pathways that share components (Fig. 4 D–F and SI
Appendix, Fig. S6A). Bud-site–selection proteins may selectively
regulate Cdc42p in the fMAPK pathway through Bem4p. Bem4p
and Rsr1p interact, based on a two-hybrid screen for cell polarity
regulators (Fig. 7, dashed line between Rsr1p and Bem4p) (96), and
both proteins bind to Cdc24p. Rsr1p interacts with the CH do-
main of Cdc24p, which has an auto-inhibitory function (58), and
Bem4p binds to the autoregulatory PH-like domain of Cdc24p
(34). Thus, Bem4p and Rsr1p may cooperatively regulate Cdc42p
by binding separate autoregulatory domains in Cdc24p. Alter-
natively, Rsr1p may initiate Cdc24p activation at bud sites early
in the cell cycle that is sustained by Bem4p. The salient finding
from this study is that spatial information is integrated into the
fMAPK pathway through a shared GTPase module.

Bud-Site–Selection Proteins as Coincidence Detectors of Nutrient
Status. We also show that positional landmarks conditionally regu-
late the fMAPK pathway in a manner that corresponds to their
nutrient-dependent functions in bud-site selection. Glucose levels
feed into the fMAPK pathway in two ways (Fig. 7). One is by
changes in the glycosylation of Msb2p that occur under nutrient-
limiting conditions, resulting in elevated processing of under-glyco-
sylatedMsb2p and fMAPK pathway activation (23). This mechanism
involves the unfolded protein response. The other is by differential
recognition of positional landmarks in different nutrient states. Axial
position is an indicator of nutrient surplus, whereas distal-pole
budding is an indicator of starvation.
At the distal pole, signaling and position-dependent budding are

coordinated. Sho1p interacts with Bud8p (Fig. 7, dashed line be-
tween Bud8p and Sho1p) (22), and the proteins localize to the distal
pole (70, 97). The fMAPK pathway and other pathways regulate
Bud8p-dependent bud-site selection (20). The interaction between
signaling and polarity proteins at the distal pole may cluster signaling
machinery at the site where polarity reorganization occurs. It is
plausible that other bud-site–selection proteins make specific con-
tacts with fMAPK regulators to modulate the signaling response.
Such interactions may contribute to a pathway-specific response.

Regulation of Spatial Integrity by a Surveillance Pathway.We show that a
surveillance mechanism monitors spatial position and executes a
MAPK-dependent response to extrinsic and intrinsic cues. As dis-
cussed above, extrinsic changes in glucose levels lead to quantitatively

different signaling from axial and distal cues. We also show that in-
trinsic problems with bud-site selection, such as in mutants where
bud-site selection is compromised, lead to attenuation of the fMAPK
pathway. In this way, cells compromised for spatial integrity
dampen MAPK signaling until the cell gets its bearings. The
regulatory mechanism defined here may extend to other systems.
Positional marks have been identified in filamentous fungal spe-
cies (98) and have been shown to influence cell polarity and vir-
ulence in human (99, 100) and plant fungal pathogens (101). It
may be interesting to define how such cues impact regulatory
pathways to control pathogenic differentiation programs. Spatial
cues may generally impact signaling pathways to remodel cell fate
and mount responses to compromised positional integrity.
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