Nanoscale magnetism, Spintronics, Materials for solar energy harvesting
Office: 225 Fronczak Hall
Lab: 210 Fronczak Hall
Lab Phone: (716) 645-2704
Phone: (716) 645-2946
Nanoscale magnetism, Spintronics, Materials for solar energy harvesting
As dimensions of materials cross over fundamental length scales, new physics emerge. We are interested in understanding fundamental spin and magnetic phenomena in materials at reduced dimensions, such as 2D thin films, 1D nanowires and 0Dnanocrystals. We grow these materials using both chemical solution phase synthesis, and physical and chemical vapor deposition techniques. Doping, alloying and heterostructures are exploited to modify the properties of the host materials. We use magnetic,charge transport and magneto-optical probes to study the physical properties of these materials. While our research focuses on basic science, it is strongly driven by future applications in information technologies, renewable energy and biomedicine.Presently, the topics of our research include: studying magnetic effects in atomically thin transition metal chalcogenide films; developing novel magnetic nanostructures for advanced magnets, data storage and spintronics; developing novel magnetic nanoparticles for bio-imaging and magnetic hyperthermia.
We are also interested in the design and development of novel materials for energy harvesting applications. Our experimental work is guided by first principles theory and materials informatics. Presently our project is focused on developing chalcogenide perovskites, an emerging class of unconventional semiconductors.
For a complete list of publications, please see Google Scholar.