Hao Zeng, PhD

Hao Zeng.


225 Fronczak Hall
(716) 645-2946
Lab: 210 Fronczak Hall, (716) 645-2704


  • BS, Physics, Nanjing University, China – 1993
  • PhD, Physics, University of Nebraska – 2001
  • Postdoctoral Research at IBM T.J. Watson Research Center – 2001-2004

Research Area


Nanoscale magnetism, Spintronics, Materials for solar energy harvesting  

Research Interests

As dimensions of materials cross over fundamental length scales, new physics emerge. We are interested in understanding fundamental spin and magnetic phenomena in materials at reduced dimensions, such as 2D thin films, 1D nanowires and 0Dnanocrystals. We grow these materials using both chemical solution phase synthesis, and physical and chemical vapor deposition techniques. Doping, alloying and heterostructures are exploited to modify the properties of the host materials. We use magnetic,charge transport and magneto-optical probes to study the physical properties of these materials.  While our research focuses on basic science, it is strongly driven by future applications in information technologies, renewable energy and biomedicine.Presently, the topics of our research include: studying magnetic effects in atomically thin transition metal chalcogenide films; developing novel magnetic nanostructures for advanced magnets, data storage and spintronics; developing novel magnetic nanoparticles for bio-imaging and magnetic hyperthermia.

We are also interested in the design and development of novel materials for energy harvesting applications. Our experimental work is guided by first principles theory and materials informatics. Presently our project is focused on developing chalcogenide perovskites, an emerging class of unconventional semiconductors.

Awards and Honors

  • UB Exceptional Scholar – Young Investigator Award, 2009
  • National Science Foundation's CAREER Award, 2006
  • IBM Research Division Award, 2003

Selected Publications

  • C. Zhao et al, “Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field,” Nature Nano., (2017).
  • Y. Yang, et al, “Deciphering chemical order/disorder and material properties at the single-atom level,” Nature, 542, 75–79 (2017).
  • S. Perera et al. “Chalcogenide perovskites–an emerging class of ionic semiconductors,” Nano Energy 22, 129-135 (2016).
  • AV Stier et al., “Terahertz Dynamics of a Topologically Protected State: Quantum Hall Effect Plateaus near the Cyclotron Resonance of a Two-Dimensional Electron Gas,” Phys. Rev. Lett., 115, 247401 (2015).
  • S. He et al., “Room Temperature Ferromagnetic (Fe1-xCox)3BO5 Nanorods,” Nano Lett., 14, 3914-3918 (2014).
  • H. Huang et al., “Remote control of ion-channels and neurons through magnetic field heating of nanoparticles,” Nature Nano., 5, 602 (2010).   

For a complete list of publications, please see Google Scholar