Theory and computation of response properties of molecules such as NMR parameters (chemical shifts, spin-spin coupling constants), optical activity – related parameters (circular dichroism, optical rotation, vibrational optical activity), nonlinear properties, and other spectral parameters; vibrational corrections; computation of properties and spectra of transition metal complexes; NMR of carbon nanotubes and other nano-scale systems; density functional theory, relativistic quantum chemistry.
Our research focuses on the computation of molecular properties that are important in many areas of chemistry and other physical sciences. These properties are obtained when considering how a molecule interacts with electric and magnetic fields, for example, or when considering what happens to the electronic structure when the atoms in a molecule vibrate. We study a variety of inorganic and organic molecules, nanotubes, metal nanoclusters, fullerenes as well as models for systems that are of importance in biochemistry and materials science. Further, we develop theoretical methods and computer programs for such computations. These methods are applicable to molecules that contain atoms from the whole periodic table. We are collaborating with several research groups around the world. Currently, our efforts are concentrated on:
- Development and improvement (speed, accuracy, size of the molecules that can be studied) of theoretical methods and computer programs for first-principles calculations of molecular response properties.
- Computations for molecules with heavy (4d and 5d) transition metal atoms as well as lanthanide and actinide complexes by employing relativistic methods, with a focus on magnetic properties such as magnetic resonance parameters.
- Ab-initio molecular dynamics to describe solvent effects on NMR parameters and to calculate NMR relaxation rates.
- Developing and applying intuitive analyses for the interpretation of chemical trends of molecular response properties (using localized orbitals).
- Vibrational corrections to molecular properties.
- Vibrational optical activity.
- Natural and magnetic field-induced optical activity: Optical rotation, circular dichroism, Raman optical activity, magneto-optical activity, magneto-chiral birefringence. We study these effects for organic molecules and metal complexes.
- Catalysts: relation of structure, bonding, and catalytic properties to observable spectroscopic features, in particular characteristic NMR parameters.
- Nano-scale systems such as carbon nanotubes: Can we potentially learn something useful about nanotubes using NMR?
For a full list of Jochen Autschbach’s Publications, please see: http://ja01.chem.buffalo.edu/publications/publications.html
- Holmes, S. T.; Schonzart, J.; Philips, A. B.; Kimball, J. J.; Termos, S.; Altenhof, A. R.; Xu, Y.; O'Keefe, C. A.; Autschbach, J.; Schurko, R. W., 'Structure and Bonding in Rhodium Coordination Compounds: A 103Rh Solid-State NMR and Relativistic DFT Study', Chem. Sci. 2024, 15, 2181-2196.
- Motta, L. C.; Autschbach, J., 'Actinide inverse trans influence versus cooperative pushing from below and multi-center bonding', Nat. Commun. 2023, 14, 4307.
- Dhbaibi, K.; Morgante, P.; Vanthuyne, N.; Autschbach, J.; Favereau, L.; Crassous, J., 'Low Temperature Luminescence in Organic Helicenes: Singlet Versus Triplet State Circularly Polarized Emission', J. Phys. Chem. Lett. 2023, 14, 1073-1081.
- Philips, A.; Autschbach, J., 'Unified Description of Proton NMR Relaxation in Water, Acetonitrile, and Methane from Molecular Dynamics Simulations in the Liquid, Supercritical and Gas Phases', J. Phys. Chem. B 2023, 127, 1167-1177.
- Morgante, P.; Autschbach, J., 'Density-Corrected DFT for Molecular Properties', J. Phys. Chem. Lett. 2023, 14, 4983-4989.
- Meng, Q.; Abella, L.; Yao, Y.-R.; Sergentu, D.-C.; Yang, W.; Liu, X.; Zhuang, J.; Echegoyen, L.; Autschbach, J.; Chen, N., ‘UN@C82: A U≡N Triple Bond Captured Inside Fullerene Cages’, Nat. Commun. 2022, 13, 7192.
- Kasemthaveechok, S.; Abella, L.; Crassous, J.; Autschbach, J.; Favereau, L., ‘Organic radicals with inversion of SOMO and HOMO energies and potential applications in optoelectronics’, Chem. Sci. 2022, 13, 9833–9847.
- Motta, L. C.; Autschbach, J., ‘Theoretical Evaluation of Metal-Ligand Bonding in Neptunium Compounds in Relation to 237Np Mössbauer spectroscopy’, Inorg. Chem. 2022, 61, 13399–13412.
- Sergentu, D.-C.; Autschbach, J., ‘Covalency in Actinide(IV) Hexachlorides in Relation to Chlorine K-Edge X-ray Absorption Structure’, Chem. Sci. 2022, 13, 3194–3207.
- Abella, L.; Favereau, L.; Crassous, J.; Autschbach, J., ‘Why is the energy of the singly occupied orbital in some radicals below the highest occupied orbital energy?’, Chem. Mater. 2021, 33, 3678–3691.
- Sergentu, D.-C.; Booth, C. H.; Autschbach, J., 'Probing multiconfigurational states by spectroscopy: The cerium XAS L3-edge puzzle', Chem. Eur. J. 2021, DOI 10.1002/chem.202101160. Selected by editors as Very Important Paper (VIP) and Cover article.
- Panetti, G. B.; Sergentu, D.-C.; Gau, M. R.; Carroll, P. J.; Autschbach, J.; Walsh, P. J.; Schelter, E. J., 'Isolation and Characterization of a Covalent Ce(IV)-Aryl Complex with an Anomalous 13C Chemical Shift', Nat. Commun. 2021, 12, 1713.
- Philips, A.; Autschbach, J., 'Quadrupolar NMR relaxation of aqueous 127I-, 131Xe, and 133Cs+: A first-principles approach from dynamics to properties', J. Chem. Theory Comput. 2020, 16, 5835-5844.
- Abella, L.; Philips, A.; Autschbach, J., 'The sodium anion is strongly perturbed in the condensed phase even though it appears like a free ion in NMR experiments', J. Phys. Chem. Lett. 2020, 11, 843-850.
- Sperling, J. M.; Warzecha, E. J.; Celis-Barros, C.; Sergentu, D.-C.; Wang, X.; Klamm, B. E.; Windorff, C. J.; Gaiser, A. N.; White, F. D.; Beery, D. A.; Chemey, A. T.; Whitefoot, M. A.; Long, B. N.; Hanson, K.; Speldrich, M.; Zurek, E.; Autschbach, J.; Albrecht-Schmitt, T. E., 'Compression of curium pyrrolidinedithiocarbamate enhances covalency', Nature 2020, 583, 396-399.
- Ganguly, G.; Sergentu, D.-C.; Autschbach, J., 'Ab Initio Analysis of Metal-Ligand Bonding in An(COT)2, An = Th, U, in Their Ground- and Core-Excited States', Chem. Eur. J. 2020, 26, 1776-1788.
- Wolford, N. J.; Sergentu, D.-C.; Brennessel, W. W.; Autschbach, J.; Neidig, M. L., 'Homoleptic Aryl Complexes of Uranium (IV)', Angew. Chem. Int. Ed. 2019, 58, 10266-10270.
- Heit, Y. N.; Sergentu, D.-C.; Autschbach, J., 'Magnetic circular dichroism spectra of transition metal complexes calculated from restricted active space wavefunctions', Phys. Chem. Chem. Phys. 2019, 21, 5586-5597.
- Shen, C.; Srebro-Hooper, M.; Weymuth, T.; Krausbeck, F.; Lopez Navarrete, J. T.; Ramirez, F. J.; Nieto-Ortega, B.; Casado, J.; Reiher, M.; Autschbach, J.; Crassous, J., 'Redox-active Chiroptical Switching in Mono- and Bis-Iron-Ethynyl-Carbo[6]Helicenes Studied by Electronic and Vibrational Circular Dichroism and Resonance Raman Optical Activity', Chem. Eur. J. 2018, 24, 15067-15079.
- Sergentu, D.-C.; Duignan, J. T.; Autschbach, J., 'Ab Initio Study of Covalency in the Ground versus Core-Excited States and X-ray Absorption Spectra of Actinide Complexes', J. Phys. Chem. Lett. 2018, 9, 5583-5591.
- Qiao, Y.; Sergentu, D.-C.; Yin, H.; Zabula, A. V.; Cheisson, T.; McSkimming, A.; Manor, B. C.; Carroll, P. J.; Anna, J. M.; Autschbach, J.; Schelter, E. J., 'Understanding and Controlling the Emission Brightness and Color of Molecular Cerium Luminophores', J. Am. Chem. Soc. 2018, 140, 4588-4595.
- Viesser, R. V.; Ducati, L. C.; Tormena, C. F.; Autschbach, J., 'The unexpected roles of sigma and pi orbitals in electron donor and acceptor group effects on the 13C NMR chemical shifts in substituted benzenes', Chem. Sci. 2017, 8, 6570-6576.
- Gendron, F.; Autschbach, J., “Puzzling lack of temperature dependence of the PuO2 magnetic susceptibility explained according to ab-initio wavefunction calculations”, J. Phys. Chem. Lett. 2017, 8, 673-678.
- Ducati, L. C.; Marchenko, A.; Autschbach, J., “NMR J-coupling constants of Tl-Pt bonded metal complexes in aqueous solution: Ab-initio molecular dynamics and localized orbital analysis”, Inorg. Chem. 2016, 55, 12011-12023.
- Shen, C.; Loas, G.; Srebro-Hooper, M.; Vanthuyne, N.; Toupet, L.; Cador, O.; Paul, F.; López Navarrete, J. T.; Ramírez, F. J.; Nieto-Ortega, B.; Casado, J.; Autschbach, J.; Vallet, M.; Crassous, J., “Iron Alkynyl Helicenes: Redox-Triggered Chiroptical Tuning in the IR and Near-IR Spectral Regions and Suitable for Telecommunications Applications”, Angew. Chem. Int. Ed. 2016, 55, 8062-8066.
- Autschbach, J.; Srebro, M., “Delocalization error and ‘functional tuning’ in Kohn-Sham calculations of molecular properties”, Acc. Chem. Res. 2014, 47, 2592-2602.
- Gendron, F.; Páez-Hernández, D.; Notter, F.-P.; Pritchard, B.; Bolvin, H.; Autschbach, J., “Magnetic properties and electronic structure of neptunyl(VI) complexes: Wavefunctions, orbitals, and crystal-field models”, Chem. Eur. J. 2014, 20, 7994-8011.
- Shen, C.; Anger, E.; Srebro, M.; Vanthuyne, N.; Deol, K. K.; Jefferson, T. D.; Muller, G.; Williams, J. A. G.; Toupet, L.; Roussel, C.; Autschbach, J.; Réau, R.; Crassous, J., “Straightforward access to mono- and bis-cycloplatinated helicenes that display circularly polarized phosphorescence using crystallization resolution methods”, Chem. Sci. 2014, 5, 1915-1927.
- Sun, H.; Autschbach, J., “Electronic energy gaps for pi-conjugated oligomers and polymers calculated with density functional theory”, J. Chem. Theory Comput. 2014, 10, 1035-1047.
- Autschbach, J., “Relativistic calculations of magnetic resonance parameters: Background and some recent developments”, J. Phil. Trans. A 2014, 372, 20120489.
- Kornecki, K. P.; Briones, J. F.; Boyarskikh, V.; Fullilove, F.; Autschbach, J.; Schrote, K. E.; Lancaster, K. M.; Davies, H. M. L.; Berry, J. F., “The First Direct Spectroscopic Characterization of a Transitory Dirhodium Intermediate Bearing a Donor/Acceptor Carbene Ligand”, Science 2013, 342, 351-354.
- Srebro, M.; Autschbach, J., “Computational Analysis of 47/49Ti NMR Shifts and Electric Field Gradient Tensors of Half-Titanocene Complexes: Structure-bonding-property relations”, Chem. Eur. J. 2013, 19, 12018-12033.