David F. Watson


David Watson.

David F. Watson


David F. Watson


Research Interests

Inorganic, materials, and physical chemistry: Synthesis and surface-functionalization of materials, assembly of nanostructured interfaces, spectroscopic characterization of photoinduced electron transfer.


  • Postdoctoral Fellow, Johns Hopkins University, 2001-2004
  • PhD, Princeton University, 2001
  • MS, Northwestern University, 1997
  • BS, Haverford College, 1996

Awards and Honors

  • College of Arts and Sciences Teaching Award, 2015
  • Scialog Fellow, Research Corporation for Science Advancement, 2013
  • Milton Plesur Award for Excellence in Teaching, UB Undergraduate Student Association, 2011-2012
  • National Science Foundation CAREER Award, 2007
  • James D. Watson Investigator Award, 2005


Materials synthesis; Surface chemistry; Photochemistry; Electron transfer processes; Spectroscopy

Research Summary

Our research involves materials chemistry, surface chemistry, photochemistry, and spectroscopy. We synthesize nanostructured inorganic materials, functionalize their surfaces with molecules and nanoparticles, and study photoinduced charge transfer at the resulting interfaces. Our goals are (1) to synthesize nanostructured materials architectures with intriguing light-harvesting properties and charge-transfer reactivity and potential applications in energy conversion, and (2) to develop, through our fundamental studies, structure-property-reactivity relationships pertaining to surface functionalization and electron transfer at nanostructured interfaces.

Current research projects focus on (1) the synthesis of quantum dot-molecule-semiconductor interfaces and the interrogation of their photoinduced charge-transfer reactivity, (2) electron injection from organic dyes to metal oxide semiconductors, and (3) fundamental studies of monolayers and mixed monolayers of adsorbates on porous metal oxide films.

Students working in our research group develop skills in synthetic materials chemistry, materials characterization techniques, surface chemistry, time-resolved spectroscopy, photochemistry, and electrochemistry.

Selected Recent Publications

  • Milleville, C.C.; Pelcher, K.E.; Sfeir, M.Y.; Banerjee, S.; Watson, D.F. “Directional Charge Transfer Mediated by Mid-Gap States: A Transient Absorption Spectroscopy Study of CdSe Quantum Dot/β-Pb0.33V2O5 Heterostructures.” J. Phys. Chem. C 2016, 120, 5221-5232. DOI: 10.1021/acs/jpcc.6b00231
  • Sellers, D.G.; Button, A.A.; Nasca, J.N.; Wolfe II, G.E.; Chauhan, S.; Watson, D.F. “Excited-State Charge Transfer within Covalently Linked Quantum Dot Heterostructures.” J. Phys. Chem. C 2015, 119, 27737-27748. DOI: 10.1021/acs/jpcc.5b07504
  • Pelcher, K.E.; Milleville, C.C.; Wangoh, L.; Chauhan, S.; Crawley, M.R.; Marley, P.M.; Piper, L.F.J.; Watson, D.F.; Banerjee, S. “Integrating β-PbxV2O5 Nanowires with CdSe Quantum Dots: Towards Nanoscale Heterostructures with Tunable Interfacial Energetic Offsets for Charge Transfer.” Chem. Mater. 2015, 27, 2468-2479. DOI: 10.1021/cm504574h
  • Kern, M.E.; Watson, D.F. “Linker-Assisted Attachment of CdSe Quantum Dots to TiO2: Time- and Concentration-Dependent Adsorption, Agglomeration, and Sensitized Photocurrent.” Langmuir 2014, 30, 13294-13300. DOI: 10.1021/la503211k
  • Kern, M.E.; Watson, D.F. “Influence of Dispersion Forces and Ordering on the Compositions of Mixed Monolayers of Alkanoic Acids on Nanocrystalline TiO2Langmuir 2013, 29, 13797-13807. DOI: 10.1021/la4030519
  • Coughlin, K.M.; Nevins, J.S.; Watson, D.F. “Aqueous-Phase Linker-Assisted Attachment of Cysteinate(2-)-capped CdSe Quantum Dots to TiO2 for Quantum Dot-Sensitized Solar Cells.” ACS Appl. Mater. Interfaces 2013, 5, 8649-8654. DOI: 10.1021/am402219e
  • Kern, M.E.; Watson, D.F. “Influence of Solvation and the Persistence of Adsorbed Linkers on the Attachment of CdSe Quantum Dots to TiO2 via Linker-Assisted Assembly.” Langmuir 2012, 28, 15598-15605. DOI: 10.1021/la303504u
  • Sellers, D.G.; Watson, D.F. “Probing the Energetic Distribution of Injected Electrons at Quantum Dot-Linker-TiO2J. Phys. Chem. C 2012, 116, 19215-19224. DOI: 10.1021/jp307196z
  • Mulhern, K.M.; Orchard, A.; Watson, D.F.; Detty, M.R. “Influence of Surface-Attachment Functionality on the Aggregation, Persistence, and Electron-Transfer Reactivity of Chalcogenorhodamine Dyes on TiO2.” Langmuir 2012, 28, 7071-7082. DOI: 10.1021/la302916s
  • Nevins, J.S.; Coughlin, K.M.; Watson, D.F. “Attachment of CdSe Nanoparticles to TiO2 via Aqueous Linker-Assisted Assembly: Influence of Molecular Linkers on Electronic Properties and Interfacial Electron Transfer.” ACS Appl. Mater. Interfaces 2011, 3, 4242-4253. DOI: 10.1021/am200900c