David F. Watson

PhD

David Watson.

David F. Watson

PhD

David F. Watson

PhD

Research Interests

Inorganic, materials, and physical chemistry: Synthesis and surface-functionalization of materials, assembly of nanostructured interfaces, spectroscopic characterization of photoinduced electron transfer.

Education

  • Postdoctoral Fellow, Johns Hopkins University, 2001-2004
  • PhD, Princeton University, 2001
  • MS, Northwestern University, 1997
  • BS, Haverford College, 1996

Awards and Honors

  • National Science Foundation Special Creativity Extension Award, 2020
  • SUNY Chancellor’s Award for Excellence in Teaching, 2017-2018
  • College of Arts and Sciences Teaching Award, 2015
  • Scialog Fellow, Research Corporation for Science Advancement, 2013
  • Milton Plesur Award for Excellence in Teaching, UB Undergraduate Student Association, 2011-2012
  • National Science Foundation CAREER Award, 2007
  • James D. Watson Investigator Award, 2005

Specializations

Materials synthesis; Surface chemistry; Photochemistry; Electron transfer processes; Spectroscopy

Research Summary

Our research involves materials chemistry, surface chemistry, photochemistry, and spectroscopy. We synthesize nanostructured inorganic materials, functionalize their surfaces with molecules and nanoparticles, and study photoinduced charge transfer at the resulting interfaces. Our goals are (1) to synthesize nanostructured materials architectures with intriguing light-harvesting properties and charge-transfer reactivity and potential applications in energy conversion, and (2) to develop, through our fundamental studies, structure-property-reactivity relationships pertaining to surface functionalization and electron transfer at nanostructured interfaces.

Current research projects focus on (1) the synthesis of quantum dot-molecule-semiconductor interfaces and the interrogation of their photoinduced charge-transfer reactivity, (2) electron injection from organic dyes to metal oxide semiconductors, and (3) fundamental studies of monolayers and mixed monolayers of adsorbates on porous metal oxide films.

Students working in our research group develop skills in synthetic materials chemistry, materials characterization techniques, surface chemistry, time-resolved spectroscopy, photochemistry, and electrochemistry.

Selected Recent Publications

  • Handy, J.V.; Zaheer, W.; Rothfuss, A.R.M.; McGranahan, C.R.; Agbeworvi, G.; Andrews, J.L.; García-Pedraza, K.E.; Ponis, J.D.; Ayala, J.R.; Ding, Y.; Watson, D.F.; Banerjee, S. “Lone but Not Alone: Precise Positioning of Lone Pairs for the Design of Photocatalytic Architectures.” Chem. Mater. 2022, 34, 1439-1458. https://pubs.acs.org/doi/10.1021/acs.chemmater.1c03762
  • McGranahan, C.R.; Watson, D.F. “Influence of Donor-to-Acceptor Ratio on Excited-State Electron Transfer within Covalently-Tethered CdSe/CdTe Quantum Dot Colloidal Heterostructures.” J. Chem. Phys. 2022, 156, 054706. https://doi.org/10.1063/5.0078549.
  • McGranahan, C.R.; Wolfe II, G.E.; Falca, A.; Watson, D.F. “Excited-State Charge Transfer and Extended Charge Separation within Covalently Tethered Type-II CdSe/CdTe Quantum Dot Heterostructures: Colloidal and Multilayered Systems.” ACS Appl. Mater. Interf. 2021, 13, 30980-30991. https://pubs.acs.org/doi/10.1021/acsami.1c05653.
  • Abdel Razek, S.; Popeil, M.R.; Wangoh, L.; Rana, J.; Suwandaratne, N.; Andrews, J.L.; Watson, D.F.; Banerjee, S.; Piper, L.F.J. “Designing Catalysts for Water Splitting Based on Electronic Structure Considerations.” Elec. Struct. 2020, 2, 023001. https://doi.org/10.1088/2516-1075/ab7d86.
  • Cho, J.; Suwandaratne, N.S.; Razek, S.; Choi, Y.-H.; Piper, L.F.J.; Watson, D.F.; Banerjee, S. “Elucidating the Mechanistic Origins of Photocatalytic Hydrogen Evolution Mediated by MoS2/CdS Quantum Dot Heterostructures.” ACS Appl. Mater. Interf. 2020, 12, 43728-43740. https://doi.org/10.1021/acsami.0c12583.
  • Chauhan, S.; Sheng, A.; Cho, J.; Abdel Razek, S.; Suwandaratne, N.; Sfeir, M.Y.; Piper, L.F.J.; Banerjee, S.; Watson, D.F. “Type-II Heterostructures of α-V2O5 Nanowires Interfaced with Cadmium Chalcogenide Quantum Dots: Programmable Energetic Offsets, Ultrafast Charge Transfer, and Photocatalytic Hydrogen Evolution.” J. Chem. Phys. 2019, 151, 224702. https://doi.org/10.1063/1.5128148
  • Cho, J.; Sheng, A.; Suwandaratne, N.; Wangoh, L.; Andrews, J.L.; Zhang, P.; Piper, L.F.J.; Watson, D.F.; Banerjee, S. “The Middle Road Less Taken: Electronic-Structure-Inspired Design of Hybrid Photocatalytic Platforms for Solar Fuel Generation.” Acc. Chem. Res. 2019, 52, 645-655. https://doi.org/10.1021/acs.accounts.8b00378
  • Andrews, J.L.; Cho, J.; Wangoh, L.; Suwandaratne, N.; Sheng, A.; Chauhan, S.; Nieto, K.; Mohr, A.; Kadassery, K.J; Popeil, M.R.; Thakur, P.K.; Sfeir, M.Y.; Lacy, D.C.; Lee, T.-L.; Zhang, P.; Watson, D.F.; Piper, L.F.J.; Banerjee, S. “Hole Extraction by Design in Photocatalytic Architectures Interfacing CdSe Quantum Dots with Topochemically Stabilized Tin Vanadium Oxide.” J. Am. Chem. Soc. 2018, 140, 17163-17174. https://doi.org/10.1021/jacs.8b09924