Sophie Nowicki

PhD

Sophie Nowicki.

Sophie Nowicki

PhD

Sophie Nowicki

PhD

Empire Innovation Professor
UB RENEW Institute

Specialties

Glaciology, ice-sheet modeling, climate modeling, sea level change

Education

Ph.D, Theoretical Glaciology, University College London, 2007

Research Interests

My research interest lie in the broad field of ice sheet and sea level. I study how ice sheets interact with the global climate system and in particular affect sea level change, using a combination of applied mathematics, remote sensing observations and numerical modeling. The numerical models that I use span the spectrum of idealized models to large-scale continental ice sheet models. Key to my work are climate models, since they are key for providing forcing for ice sheet model, such as the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6).

Course Offerings

  • GLY 573: Introduction to Computational Earth Science
  • GLY465/565: Environmental Remote Sensing
  • GLY 499: Independent Study
  • GLY 633: Graduate Research
  • GLY 700: Thesis Guidance
  • EAS 560: Data Science Project

Current Students

  • Da Lin, MS TBA
  • Betsy McCall , PhD TBA
  • Rachel Oien, Postdoctoral Fellow

Please contact Dr. Nowicki if you are interested in working with me. My research website gives a better idea of the projects that I am working on.

Recent Publications

B. Fox-Kemper, H. T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S. S. Drijfhout, T. L. Edwards, N. R. Golledge, M. Hemer, R. E. Kopp, G. Krinner, A. Mix, D. Notz, S. Nowicki, I. S. Nurhati, L. Ruiz, J-B. Sallée, A. B. A. Slangen, Y. Yu, 2021, Ocean, Cryosphere and Sea Level Change. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.

J.A. MacGregor, L.N. Boisvert, and 48 others, 2021: The scientific legacy of NASA’s Operation IceBridge. Reviews of Geophysics, 59, e2020RG000712 https://doi.org/10.1029/2020RG000712

T. Edwards, S. Nowicki and 82 others, 2021: Projected land ice contributions to twenty-first century sea level rise, Nature, 593, 74-82, doi:10.1038/s41586-021-03302-y

A. Payne, S. Nowicki and 62 others, 2021: Future sea level change under CMIP5 and CMIP6 scenarios from the Greenland and Antarctic ice sheets, Geophys. Res. Let., e2020GL091741, https://doi.org/10.1029/2020GL091741

W.H. Lipscomb, G. Leguy, N. Jourdain, X. Asay-Davis, H. Seroussi, and S. Nowicki, 2021: ISMIP6-based projections of ocean-forced Antarctic Ice Sheet evolution using the Community Ice Sheet Model, The Cryosphere, 15, 633–661, https://doi.org/10.5194/tc-15-633-2021.

E. Larour, L. Caron, M. Morlighem, S. Adhikari, T. Frederikse, N.-J. Schlegel, E. Ivins, B. Hamlington, R. Kopp, and S. Nowicki, 2020. ISSM-SLPS: geodetically compliant Sea-Level Projection System for the Ice-sheet and Sea-level System Model v4.17, Geosci. Model Dev., 13, 4925–4941, https://doi.org/10.5194/gmd-13-4925-2020, 2020.

J.P. Briner, J.K. Cuzzone, J.A. Badgeley, N. Young, E. Steig, M. Morlinghem, N. Schlegel, G. Hakim, J. Schaefer, J. Johnson, A. Lesnek, E. Thomas, E. Allan, O. Bennike, A. Cluett, B. Csatho, A. de Vernal, J. Downs, E. Larour, and S. Nowicki, 2020. Rate of mass loss from the Greenland Ice Sheet will exceed Holocene values this century. Nature 586, 70–74. https://doi.org/10.1038/s41586-020-2742-6

J.M. Sperhac, K. Poinar, R. Jones‐Ivey, J. Briner, B. Csatho, S. Nowicki, E. Simon, E. Larour, J. Quinn, and A. Patra, 2020. GHub: Building a glaciology gateway to unify a community. Concurrency Computat. Pract. Exper, e6130, https://doi.org/10.1002/cpe.6130

O. Sergienko, M. Morlighem, S. Nowicki, and L. Padman, 2020. Modeling: A powerful and versatile tool in glaciology, Eos, 101, https://doi.org/10.1029/2020EO146349.

R. Cullather, L. Andrews, M. Croteau, N. Digirolamo, K. Hall, Y.-K. Lim, B. Loomis, C. Shuman, and S. Nowicki, 2020. Anomalous circulation in July 2019 resulting in mass loss on the Greenland Ice Sheet. Geophysical Research Letters, 47, e2020GL087263.  https://doi.org/10.1029/2020GL087263

N. Jourdain, X. Asay-Davis, T. Hattermann, F. Straneo, H. Seroussi, C. Little, and S. Nowicki, 2020. A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections, 14, 3111-3134, The Cryosphere, https://doi.org/10.5194/tc-14-3111-2020.

H. Seroussi, S. Nowicki, A. Payne, H. Goelzer, W. Lipscomb, A. Abe Ouchi, C. Agosta, T. Albrecht, X. Asay-Davis, A. Barthel, R. Calov, R. Cullather, C. Dumas, R. Gladstone, N. Golledge, J. Gregory, R. Greve, T. Hatterman, M. Hoffman, A. Humbert, P. Huybrechts, N. Jourdain, T. Kleiner, E. Larour, G. Leguy, D. Lowry, C. Little, M. Morlighem, F. Pattyn, T. Pelle, S. Price, A. Quiquet, R. Reese, N. Schlegel, A. Shepherd, E. Simon, R. Smith, F. Straneo, S. Sun, L. Trusel, J. Van Breedam, R. van de Wal, R. Winkelmann, C. Zhao, T. Zhang, and T. Zwinger, 2020. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century, 14, 3033-3070, The Cryosphere, https://doi.org/10.5194/tc-14-3033-2020.

H. Goelzer, S. Nowicki, A. Payne, E. Larour, H. Seroussi, W. Lipscomb, J. Gregory, A. Abe-Ouchi, A. Shepherd, E. Simon, C. Agosta, P. Alexander, A. Aschwanden, A. Barthel, R. Calov, C. Chambers, Y. Choi, J. Cuzzone, C. Dumas, T. Edwards, D. Felikson, X. Fettweis, N. Golledge, R. Greve, A. Humbert, P. Huybrechts, S. Le clec'h, V. Lee, G. Leguy, C. Little, D. Lowry, M. Morlighem, I. Nias, A. Quiquet, M. Rückamp, N. Schlegel, D. Slater, R. Smith, F. Straneo, L. Tarasov, R. van de Wal, and M. van den Broeke, 2020.  The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6, 14, 3071-3096 The Cryosphere, https://doi.org/10.5194/tc-14-3071-2020.

S. Sun, F. Pattyn, E. Simon, T. Albrecht, S. Cornford, R. Calov, C. Dumas, F. Gillet-Chaulet, H. Goelzer, N. Golledge, R. Greve, M. Hoffman, A. Humbert, E. Kazmierczak, T. Kleiner, G. Leguy, W. Lipscomb, D. Martin, M. Morlighem, S. Nowicki, D. Pollard, S. Price, A. Quiquet, H. Seroussi, T. Schlemm, J. Sutter, R. van de Wal, R. Winkelmann, and T. Zhang, 2020. Antarctic ice sheet response to sudden and sustained ice shelf collapse (ABUMIP), 1-4, Journal of Glaciology, https://doi.org/10.1017/jog.2020.67

S. Nowicki, H. Goelzer, H. Seroussi, A. Payne, W., Lipscomb, A., Abe-Ouchi, C. Agosta, P. Alexander, X. Asay-Davis, A. Barthel, T. Bracegirdle, R. Cullather, D. Felikson, X. Fettweis, J. Gregory, T. Hattermann, N. Jourdain, P. Kuipers Munneke, E. Larour, C. Little, M. Morlighem, I. Nias, A. Shepherd, E. Simon, D. Slater, R. Smith, F. Straneo, L. Trusel, M. van den Broeke, and R. van de Wal, R., 2020: Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models, The Cryosphere, 14, 2331–2368, https://doi.org/10.5194/tc-14-2331-2020, 2020.

B. Hamlington, A. Gardner, E. Ivins, J. Lenaerts, J. Reager, D. Trossman, et al., 2020: Understanding of contemporary regional sea‐level change and the implications for the future. Reviews of Geophysics, 58, e2019RG000672. https://doi.org/10.1029/2019RG000672

D. Slater, D. Felikson, F. Straneo, H. Goelzer, C. Little, M. Morlighem, X. Fettweis and S. Nowicki, 2020: Twenty-first century ocean forcing of the Greenland ice sheet for modelling of sea level contribution, The Cryosphere, 14, 985–1008, https://doi.org/10.5194/tc-14-985-2020

A. Barthel, C. Agosta, C. Little, T. Hattermann, N. Jourdain, H. Goelzer, S. Nowicki, H. Seroussi, F. Straneo, and T. Bracegirdle, 2020, CMIP5 model selection for ISMIP6 ice sheet model forcing: Greenland and Antarctica, The Cryosphere, 14, 855–879, https://doi.org/10.5194/tc-14-855-2020

A. Levermann, R. Winkelmann, T. Albrecht, H. Goelzer, N. Golledge, R. Greve, P. Huybrechts, J. Jordan, G. Leguy, D. Martin, M. Morlighem, F. Pattyn, D. Pollard, A. Quiquet, C. Rodehacke, H. Seroussi, J. Sutter, T. Zhang, J. Van Breedam, R. DeConto, C. Dumas, J. Garbe, G. Gudmundsson, M. Hoffman, A. Humbert, T. Kleiner, W. Lipscomb, M. Meinshausen, E. Ng, M. Perego, S. Price, F. Saito, N. Schlegel, S. Sun, R. van de Wal, and S. Nowicki: Projecting Antarctica's contribution to future sea level rise from basal ice-shelf melt using linear response functions of 16 ice sheet models (LARMIP-2), 2020, Earth Syst. Dynam., 11, 35-76, https://doi.org/10.5194/esd-11-35-2020.

A. Shepherd, E., Ivins, E., Rignot, et al. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature (2019) doi:10.1038/s41586-019-1855-2.

S. Seroussi, S. Nowicki, E. Simon, A. Abe Ouchi, T. Albrecht, J. Brondex, S. Cornford, C. Dumas, F. Gillet-Chaulet, H. Goelzer, N. Golledge, J. Gregory, R. Greve, M. Hoffman, A. Humbert, P. Huybrechts, T. Kleiner, E. Larour, G. Leguy, W. Lipscomb, D. Lowry, M. Mengel, M. Morlighem, F. Pattyn, A. Payne, D. Pollard, S. Price, A. Quiquet, T. Reerink, R. Reese, C. Rodehacke, N. Schlegel, A. Shepherd, S. Sun, J. Sutter, J. Van Breedam, R. van de Wal, R. Winkelmann and T. Zhang, 2019. initMIP-Antarctica: An ice sheet model initialization experiment of ISMIP6, The Cryosphere, 13(5):1441-1471, doi:10.5194/tc-13-1441-2019.

P. Alexander, A. LeGrande, E. Fischer, M. Tedesco, X. Fettweis, M. Kelley, S. Nowicki, and G. Schmidt, 2019. Simulated Greenland Surface Mass Balance in the GISS ModelE2 GCM: Role of the Ice Sheet Surface, Journal of Geophysical Research: Earth Surface, 124, doi:10.1029/2018JF004772.

Y.-K. Lim, R. Cullather, S. Nowicki, and K.-M. Kim, 2019. Inter-relationship between subtropical Pacific sea surface temperature, Arctic sea ice concentration, and North Atlantic Oscillation in recent summers, Scientific Reports, 9:3481, doi:10.1038/s41598-019-39896-7.

F. Pattyn, C. Ritz, E. Hanna, X. Asay-Davis, R. DeConto, G. Durand, L. Favier, X. Fettweis, H. Goelzer, N. Golledge, P. Kuipers Munneke, J. Lenaerts, S. Nowicki, A. Payne, A. Robinson, H. Seroussi, L. Trusel, and M. van den Broeke, 2018. The Greenland and Antarctic ice sheets under 1.5oC global warming. Nature Climate Change, doi:10.1038/s41558-018-0305-8.

S. Nowicki and H. Seroussi, 2018. Projections of future sea level contributions from the Greenland and Antarctic Ice Sheets: Challenges beyond dynamical ice sheet modeling. Oceanography. 31(2), 84-93.

A. Shepherd, E. Ivins, E. Rignot, et al., 2018. Mass Balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558,219-222, doi:10.1038/s41586-018-0179-y.

T. Moon, A. Ahlstrom, H. Goelzer, W. Lipscomb, and S. Nowicki, 2018. Rising oceans Guaranteed: Antarctic Land Ice Loss and Sea Level Rise. Current Climate Change Reports, doi:10.1007/s40641-018-0107-0.

H. Goelzer, S. Nowicki, T. Edwards, M. Beckley, A. Abe-Ouchi, A. Aschwanden, R. Calov, O. Gagliardini, F. Gillet-Chaulet, N. Golledge, J. Gregory, R. Greve, A. Humbert, P. Huybrechts, J. Kennedy, E. Larour, W. Lipscomb, S. Le clec´h, V. Lee, M. Morlighem, F. Pattyn, A. Payne, C. Rodehacke, M. Rückamp, F. Saito, N. Schlegel, H. Seroussi, A. Shepherd, S. Sun, R. van de Wal, and F. Ziemen, 2018. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison, The Cryosphere, 12,1433-1460, doi:10.5194/tc-12-1433-2018.

C.F. Dow, M.A. Werder, G. Babonis, S. Nowicki, R.T. Walker, B. Csatho, and M. Morlinghem, 2018. Dynamics of active subglacial lakes in Recovery Ice Stream. Journal of Geophysical Research: Earth Surface, doi:10.1002/2017JF004409.

R. Cullather, and S. Nowicki, 2018. Greenland ice sheet surface melt and its relation to daily atmospheric conditions. Journal of Climate, 31(5),1897-1919, doi:10.1175/jcli-d-17-0447.1.

T.J. Hearty, J.N. Lee, D.L. Wu, R. Cullather, J.M. Blaisdell, J. Susskind, and S. Nowicki, 2018. Intercomparison of surface temperatures from AIRS, MERRA, MERRA2, with NOAA and GC-Net weather stations at Summit, Greenland. Journal of Applied Meteorology and Climatology, doi:10.1175/JAMC-D-12-0216.1.

D.K. Hall, R. Cullather, N. DiGirolamo, J. Comiso, B. Medley and S. Nowicki, 2018. A multilayer surface temperature, surface albedo, and water vapor product of Greenland from MODIS, Remote Sensing, 10(4), 555, doi:10.3390/rs10040555.

R.T. Walker, M.A. Werder, C.F. Dow and S. Nowicki, 2017. Determining ice sheet uplift surrounding subglacial lakes with a viscous plate model. Frontiers in Earth Science, 5, doi:10.3389/feart.2017.00103.

A. Shepherd, and S. Nowicki, 2017. Improvements in ice sheet sea level projections Nature Climate Change, 7, 672-674, doi:10.1038/nclimate3400.

J. Marotzke, C. Jakob, S. Bony, P. Dirmeyer, P O’Gormab, E. Hwakins, S. Perkins-Kirkpatrick, C. Le Quere, S. Nowicki, K. Paulavets, S. Seneviratne, B. Stevens, and M. Tuma, 2017. Climate research must sharpen its view. Nature Climate Change, 7, 89-91 doi:10.1038/nclimate3206.

S. Price, M. Hoffman, J. Bonin, I. Howat, T. Neumann, J. Saba, I. Tezaur, J. Guerber, D. Chambers, K. Evans, J. Kennedy, J. Lenaerts, W. Lipscomb, M. Perego, A. Salinger, R. Tuminaro, M. van den Broeke, and S. Nowicki, 2017. An ice sheet model validation framework for the Greenland ice sheet, Geoscientific Model Development, 10 (1), 255-270 doi:10.5194/gmd-10-255-2017.

K. Poinar, I. Joughin, D. Lilien, L. Brucker, L. Kehrl and S. Nowicki, 2017. Drainage of Southeast Greenland firn aquifer water through crevasses to the bed. Frontiers in Earth Science, 5 doi:10.3389/feart.2017.00005.

S. Nowicki, A. Payne, E. Larour, H. Seroussi, H. Goelzer, W. Lipscomb, J. Gregory, A. Abe Ouchi, and A. Shepherd, 2016. Ice sheet modeling intercomparison project (ISMIP6) contribution to CMIP6. Geoscientific Model Development, 9, 4521-4545, doi:10.5194/gmd-9-4521-2016.

C. Dow, M Werder, S. Nowicki and R Walker, 2016. Modeling Antarctic subglacial lake filing and drainage cycles. The Cryosphere, 10, 1381-1393, doi:10.5194/tc-10-1381-2016.

R. Cullather, S. Nowicki, B. Zhao, and L. Koenig, 2016. A characterization of recent Greenland Ice Sheet surface melt and runoff in contemporary reanalyses and a regional climate model. Frontiers in Earth Science, 4 (10) doi:10.3389/feart.2016.00010.

Y-K Lim, S. D. Schubert, S. Nowicki, et al. 2016. Atmospheric summer teleconnections and Greenland ice sheet surface mass variations: insights from MERRA-2. Environmental Research Letters, 11 (2), doi:10.1088/1748-9326/11/2/024002.

J.A. MacGregor,  M. A. Fahnestock, G. A. Catania, A. Aschwanden, G. Clow, W. Colgan, S. Gogineni, M. Morlinghem, S. Nowicki, J. Paden, S. Price and H. Seroussi, 2016. A synthesis of the basal thermal state of the Greenland Ice Sheet. Journal of Geophysical Research - Earth Surface, 121, doi:10.1002/2015jf003803.

K. Briggs, A. Shepherd, A. Hogg, E. Ivins, N. Schlegel, I. Joughin, B. Smith, G. Krinner, G. Moyano, S. Nowicki, T. Payne, E. Rignot, I. Velocogna, T. Scambos, M. van den Broeke and P. Whitehouse, 2016. Charting ice sheet contributions to global sea level rise. Eos, 97, doi:10.1029/2016eo055719.

R. Cullather, Y.-K. Lim, L. N. Boisvert, L. Brucker, J. Lee and S. Nowicki, 2016. Analysis of the warmest Arctic winter, 2015-2016. Geophysical Research Letters, doi:10.1002/2016GL071228.

R.T. Walker, B. R. Parizek, R. B. Alley, and S. Nowicki, 2016. A viscoelastic model of ice stream flow with application to stick-slip motion. Frontiers in Earth Science, 4, doi:10.3389/feart.2016.00002.

B. Medley, S. Ligtenberg, I. Joughin, M.R Van den Broeke, S. Gogineni and S. Nowicki, 2015. Antarctic firn compaction rates from repeat-track airborne radar data: I. Methods. Annals of Glaciology, 56(70), 155-166, doi:10.3189/2015aog70a203.

A. Levermann, R. Winkelmann, S. Nowicki, J. Fastook, K. Frieler, R. Greve, H. Hellmer, M.  Martin, M. Meinshausen, M. Mengel, A. Payne, D. Pollard, T. Sato, R. Timmermann, W. Wang and R. Bindschadler, 2014. Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models. Earth System Dynamics, 5, 271-293, doi:10.5194/esd-5-271-2014.

R. Fischer, S. Nowicki, M. Kelley and G. Schmidt, 2014. A system of conservative regridding for ice/atmosphere coupling in a GCM. Geoscientific Model Development, 7, 883-907, doi:10.5194/gmd-7-883-2014.

S. Adhikari, E. Ivins, E. Larour, H. Seroussi, M. Morlighem, and S. Nowicki, 2014. Future Antarctic bed topography and its implications for ice sheet dynamics. Solid Earth, 5(1), 569-584, doi:10.5194/se-5-569-2014.

R. Cullather, S. Nowicki, B. Zhao, and M. Suarez, 2014. Evaluation of the surface representation of the Greenland ice sheet in a general circulation model. Journal of Climate, 27, 4835-4856, doi:10.1175/JCLI-D-13-00635.1.

S. Nowicki, and 31 others, 2013. Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project I: Antarctica. Journal of Geophysical Research- Earth Surface, 118, 1-23, doi:10.1002/jgrf.20081.

S. Nowicki, and 31 others, 2013. Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project II: Greenland. Journal of Geophysical Research- Earth Surface, 118, 1025-1044, doi:10.1002/ jgrf.20076.

R. Walker, D. Holland, B. Parizek, R. Alley, S. Nowicki, and A. Jenkins, 2013. Efficient flowline simulations of ice-shelf/ocean interactions: Sensitivity studies with a fully coupled model. Journal of Physical Oceanography, 43, 2200-2210, doi:10.1175/JPO-D-13-037.1

B. Parizek, K. Christianson, S. Anandakrishnan, R. Alley, R. Walker, R. Edwards, D. Wolfe, G. Bertini, S. Rinehart, R. Bindschadler, and S. Nowicki, 2013. Dynamic (in)stability of Thwaites Glacier, West Antarctica, Journal of Geophysical Research- Earth Surface, 118, 1-18, doi:10.1002/jgrf.20044.

R. Bindschadler, S. Nowicki and 26 others, 2013. Ice-sheet model sensitivity to environmental forcing and their use in projecting future sea-levels (The SeaRISE Project), Journal of Glaciology, 59,214, doi:10.3189/2013JoG12J125.

S. Nowicki and D. Wingham, 2008. Conditions for a steady ice sheet – ice shelf junction, Earth and Planetary Science Letters, doi:10.1016/j.epsl.2007.10.018.

S. Nowicki and C. Merchant, 2004. Observations of diurnal and spatial variability of radiative forcing by equatorial deep convective clouds, Geophysical Research Letters, doi:10.1029/2003JD004176.